

Virtual Design Review 2

Team 09: Sprag Clutch Addition to Reciprocating Lever Transmission

Presenting: Daniel Dudley, Grant Parker, and Iain Marsh

Project Recap

Addition of sprag clutches to RLT

Longer crank arms and sprag clutches have potential to increase efficiency

Figure 1. RLT CAD Model.

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Grant Parker

Systems Engineering Approach: V-Model

Target Catalog

Table 1 *Metrics*

Metric	Yes	No
Power Increase	Х	
Improvement of Gear Meshing	Х	
Longer Crank Arms	Х	
Addition of Sprag Clutches	х	

Figure 3. Bicycle utilizing RLT drawn by Gordon Hansen, AICP.

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Grant Parker

Target Catalog Cont.

Sub-system Metrics	Targets
Sprag Clutches	US \$300
Shafts	US \$100
Crank Arms	2 kg
Housing	4 kg
Number of Sprag Clutches	6
Number of Bevel Gears	2
Number of Pinion Gears	4
Number of Crank Arms	2
Power (50 RPM – 70 RPM)	130 W
Pedal Force (50 RPM – 70 RPM)	200 N
Crank Arm Length	355.6 mm
Output Shaft Diameter	25.4 mm
Cadence	60 RPM

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Grant Parker

Target Summary

Efficiency Increase by 10%

- Purpose: Increase in efficiency would potentially lead to a new manufactured product.
 - *Considerations:* Smooth RLT and sprag clutch interaction.
 - *Plans:* Test power output for bike with and without RLT and compare.

Improvement in Gear Meshing

- Purpose: Effective gear meshing would lengthen the life of the gears as well as increase the power output.
 - Considerations: Gear ratios, safety factors, bearing fittings in RLT housing, stress analysis on gear teeth.
 - Plans: Produce CAD models with new design and run motion tests via CAD software.

Target Summary

Longer Crank Arms

- Purpose: Longer crank arms will create a larger moment and lead to more power production.
 - Considerations: Crank arm material, crank arm shape design, shear stress analysis, user compatibility.
 - Plans: Develop CAD models of crank arms, run stress analysis tests via CAD, implement best design.

Addition of Sprag Clutches

- Purpose: Sprag clutches could potentially increase the torque output of the drive train.
 - Considerations: Shaft size, RLT housing dimensions, shear force analysis.
 - Plans: Spec. out and obtain sprag clutches. Analyze shear force on the shaft with the added sprag clutches.

Concept Generation

➢ Systems

- Pedal Return Mechanism
- Crank Arm
- Pedal Travel Limiter

System 1: Pedal Return Mechanism

Concept 1: With Gears

Pros

- Returns non-driven crank arm using gears
- Clips are not needed

Cons

- Weighs more
- More complicated design
- Costs more to manufacture

Concept 2: Without gears

Pros

- Costs less to manufacture
- Weighs less

Cons

- Requires muscle memory to define pedal angular motion
- Requires clips or clipless pedals

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

System 2: Crank Arm

Concept 1: 10.5-inch linear

- Pros
 - Easy to manufacture
- > Cons
 - Tabs are weaker

Concept 2: 14-inch tapered

> Pros

- Generates more torque
- Splines are stronger
- Minimizes weight
- Cons
 - Difficult to manufacture

(a). 10.5-inch linear profile crank arm.
(b) 14-inch tapered profile crank arm.
Figure 4. Concepts of crank arms.

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

System 3: Pedal Travel Limiter

Concept 1: Protruding tabs

Pros

- Can adjust easier to accommodate rider preference
- Easier to manufacture
- Seals internal

Concept 2: Recessed housing

Pros

Stronger design

Cons

- More difficult to adjust
- Difficult to add seal

Cons

Weaker

Iain Marsh

Thank you!

Any Questions?

Exploded Model View

